Abstract:
Meralgia paresthetica (MP) is a neuropathy that involves pain and sensory symptoms in the distribution of the lateral femoral cutaneous nerve and is mostly caused by entrapment of the lateral femoral cutaneous nerve. The etiology of MP includes pregnancy, trauma, tumors, surgical complications and other conditions with increased intraabdominal pressure. The diagnosis of MP is usually based primarily upon clinical signs and symptoms, but other diagnostic tools can be used in patients with atypical clinical presentations. Treatment focuses on relieving symptoms caused by nerve compression and usually involves conservative approach. Surgical treatment may be considered if conservative methods fail.

Keywords: Meralgia paresthetica; lateral femoral cutaneous nerve entrapment; etiology; diagnosis; treatment; hip pain

Meralgia Paresthetica - Lateral Femoral Cutaneous Nerve Entrapment

Dora Madiraca Glasović1, Nika Šlaus2, Mirna Šitum1, Marko Pećina2

1 Department of Dermatology and Venereology, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
2 School of Medicine University of Zagreb, Zagreb, Croatia

Copyright (C) 2021 Madiraca Glasović D, Šlaus N, Šitum M, Pećina M. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Citation: Madiraca Glasović D, Šlaus N, Šitum M, Pećina M. Meralgia paresthetica - lateral femoral cutaneous nerve entrapment RAD CASA - Medical Sciences. 547=54-55 (2021): 56-63 DOI: https://dx.doi.org/10.21857/mzvptq6v9
Introduction

Meralgia paraesthetica (MP) is a neuropathy due to compression or entrapment or stretching of the lateral femoral cutaneous nerve (LFCN). The characteristic symptoms consist of paresthesia, burning pain, and dysesthesia in the anterolateral side of the thigh, in the LFCN distribution area. Also in patients with MP there is a reduction or loss of sensation to touch, pain and heat, and very rarely hyperesthesia. The symptoms are more common in males than in females, are similar on the right and left thigh, and are rarely bilateral.

The incidence rate of MP is 4.3 per 10,000 person a year and it usually affects people ages 30 to 40 years. MP is more often present in patients suffering from carpal tunnel syndrome and is related to pregnancy 1. Even though meralgia paraesthetica (MP) is benign, it is a highly unpleasant sense in the lateral side of the thigh. It is also differentially important when considering pathological conditions in the inguinal region, the region of the greater trochanter, the hip and the lower part of the abdomen and spine. Meralgia paraesthetica was first described by Bernhardt in 1895. 2 and in the same year Roth 3,4 applied the name of this entity known also as Bernhardt’s syndrome and Roth’s meralgy, but Heger 1885. first reported its symptoms 1. Another interesting fact is that in the year 1895 Sigmund Freud described patients with the symptoms of meralgia paraesthetica some of whom exhibited bilateral symptomatology 5. Freud, himself had symptoms of Meralgia paraesthetica (MP). Freud did not associate these symptoms of MP in described patients with sexual pathology.

The term meralgia paraesthetica is derived from the Greek words “meros” and “alges” meaning meros -thigh, and “alges” -pain. Mumenthaler and Schliack 7 described the same entity as “syndrome of the inguinal ligament”.

Etiology

The etiology of the meralgia paraesthetica can be discussed under two headings: predisposing lesions and precipitating causes. Pre-disposing lesions refer to the fact that the nerve is vulnerable to compression or stretching because of its anatomotopographical position from its origin under the psoas muscle until it exits from the pelvis under or through the inguinal ligament and the fascia lata. The lateral femoral cutaneous nerve (LFCN), a solely sensory nerve, originates from the L2 and L3 nerve posterior roots (Figure 1.), passes under the psoas muscle, and emerges laterally to cross the ilium buried in a fibrous tunnel formed by a doubling in the fascia of the iliacus muscle. In this fibrous tunnel the nerve can be compressed like the others peripheral nerves in the osteofibrous or myofibrous or only fibrous tunnel of the human body described by Pečina M. et al. 8 as „Peripheral nerve compression syndromes or tunnels syndromes“. The lateral femoral cutaneous nerve courses toward the medial aspect of the anterior superior iliac spine and bends below or through the inguinal ligament at an angle of 70 to 90 degrees. This sharp turn of the nerve can also cause symptoms of meralgia paraesthetica. Just before reaching the anterior superior iliac spine the nerve emerges to lie superficial to the iliac fascia. The nerve passes into the thigh just medial to

![Figure 1. The lateral cutaneous femoral nerve originates from the L2 and L3 nerve posterior roots](image1)

![Figure 2. The lateral femoral cutaneous nerve (1) passes into the thigh just medial to the anterior superior iliac spine (ref.8).](image2)
<table>
<thead>
<tr>
<th>ETIOLOGY</th>
<th>AUTHOR(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct injury, stretching, or scar formation</td>
<td>Peterson; 1952(^13); Kopell and Thompson 1963(^12); Mandić, 1982(^15); Pećina et al., 2001(^8)</td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Peterson, 1952(^15); Rhodes, 1957(^16); Pearson, 1957(^17); Gooding, 2020(^18)</td>
</tr>
<tr>
<td>Anatomic variation and anomalies</td>
<td>Ghent, 1961(^11); Kokubo et al., 2018(^19)</td>
</tr>
<tr>
<td>Retroperitoneal hematoma or tumor or metastasis</td>
<td>Flowers, 1968(^20); Tharion and Bhattacharji, 1997(^21)</td>
</tr>
<tr>
<td>Abdominal aortic aneurysm</td>
<td>Carayon and Gruet, 1969(^22)</td>
</tr>
<tr>
<td>Seat belt trauma</td>
<td>Beresford, 1971(^23); Mandic, 1982(^15)</td>
</tr>
<tr>
<td>Iliopsoas muscle abscess</td>
<td>Komar, 1977(^14)</td>
</tr>
<tr>
<td>Abdominal/inguinal surgery</td>
<td>Moscona and Hirshowitz, 1980(^26); Yamout et al., 1994(^27); Polidori et al., 2003(^28)</td>
</tr>
<tr>
<td>Iliac graft harvest</td>
<td>Massey, 1980(^29); Mandić 1982(^15); Nahabedian and Dellon 1995(^30)</td>
</tr>
<tr>
<td>Tight girdle/clothinging</td>
<td>Bora and Ostermann, 1982(^31)</td>
</tr>
<tr>
<td>Obesity</td>
<td>Mandic, 1982(^35); Parisi et al., 2011(^33)</td>
</tr>
<tr>
<td>Weight loss</td>
<td>Baldini et al., 1982(^34)</td>
</tr>
<tr>
<td>Laparoscopic inguinal hernia repair</td>
<td>Broin et al., 1995(^35)</td>
</tr>
<tr>
<td>Limb length discrepancy</td>
<td>Goel, 1999(^36)</td>
</tr>
<tr>
<td>Hemangiomatosis in the pelvic region</td>
<td>Yamamoto et al., 2001(^37)</td>
</tr>
<tr>
<td>Gynecologic and obstetric surgery</td>
<td>Peters et al., 2006(^38)</td>
</tr>
<tr>
<td>Hip-huggers</td>
<td>Park et al., 2007(^39)</td>
</tr>
<tr>
<td>Body armor wear</td>
<td>Fargo and Konitzer; 2007(^40)</td>
</tr>
<tr>
<td>Lipoma</td>
<td>Rau et al., 2010(^41)</td>
</tr>
<tr>
<td>Shoulder surgery in the beach chair position</td>
<td>Satin et al., 2014(^42)</td>
</tr>
<tr>
<td>Entrapment at the fascia lata</td>
<td>Omichi et al., 2015(^43)</td>
</tr>
<tr>
<td>Compression by “smart” devices</td>
<td>Karwa et al., 2016(^44)</td>
</tr>
<tr>
<td>Femoral cannulation (catheterization)</td>
<td>Oh SI et al., 2017(^45)</td>
</tr>
<tr>
<td>Laparoscopic ventral rectopexy</td>
<td>Jones et al., 2017(^46)</td>
</tr>
<tr>
<td>Anterior total hip arthroplasty</td>
<td>Patton et al., 2018(^47)</td>
</tr>
<tr>
<td>Hematoma after sartorius muscle tear</td>
<td>Lee and Stubbs, 2018(^48)</td>
</tr>
<tr>
<td>Pelvic osteohondroma</td>
<td>Magalhães et al., 2019(^49)</td>
</tr>
<tr>
<td>Inguinal lymphadenopathy and lymphadenomegaly</td>
<td>Gencer Atalay et al., 2020(^50); Palmar et al., 2020(^51)</td>
</tr>
<tr>
<td>Lipomatosis</td>
<td>Ganhaio et al., 2020(^52)</td>
</tr>
<tr>
<td>Prone position in spinal surgery</td>
<td>Ercan et al., 2020(^53)</td>
</tr>
<tr>
<td>Schwannoma of the LFCN</td>
<td>Markis and Markis, 2020(^54)</td>
</tr>
<tr>
<td>Prone positioning to treat covid-19</td>
<td>Bellinghausen et al., 2020(^55); Marinelli et al., 2020(^56)</td>
</tr>
</tbody>
</table>

Table 1. Proposed precipitating causes in etiologies of Meralgia Paresthetica
the anterior superior iliac spine but posterior to the lateral end of the inguinal ligament and anterior to the iliacus muscle. According to Stevens 9 and Genth 10,11 it is possible that the nerve passes through the splint inguinal ligament and this is also one of the possible etiological factor in the origin of meralgia paresthetica. Normally the nerve can be found approximately 1.5 to 2 cm distal to the inguinal ligament in a groove between the sartorius and iliacus muscles and sometimes exists the anatomical variation that the nerve passes through the sartorius muscle 11 what is also one of the possible causes of the origin of meralgia paresthetica. There is anatomical variation when the nerve courses laterally and behind the anterior superior iliac spine (Gent) and is exposed to damage more than in normal anatomical position 11. Approximately 10 cm distal to the inguinal ligament, the nerve pierces the fascia lata and divides into its thick anterior and thin posterior branches (Figure 2). This point, where the nerve pierces the fascia lata, is also the location of possible compression or stretching of the nerve with consecutive origin of clinical symptoms characteristic for meralgia paresthetica. The anterior branch of LFCN pierces the fascia lata to innervate the skin of the lateral thigh to a point just proximal to the knee. The distribution of the innervation of this anterior branch of the lateral femoral cutaneous nerve is the region of clinical signs of paresthesia such as burning, etc. The posterior branch of LFCN runs deep under the tensor fascia lata muscle to innervate the skin in the region of the trochanter maior and gluteal region.

According to Kopel and Thompson 12 the symptoms of meralgia paresthetica can exist without the known precipitating causes, this can occur solely because of acute or chronic stretching of the nerve. The lateral femoral cutaneous nerve is attached at both its origin and at the fascial tunnels. The nerve can be stretched because of leg length changes, scoliosis, trunk or leg hyperextension. Increased tension of the abdominal musculature and fascia lata due to long period of standing can cause also stretching of the nerve and provoke the symptoms of meralgia paresthetica. Precipitating causes in the etiology of meralgia paresthetica refer to the fact that the nerve can be damaged by the multiple etiologies including trauma, tumors, surgical complications, etc., as described by many authors and shown in Table 1.

Clinical presentation

Patients with MP typically present with pain in the distribution of the lateral femoral cutaneous nerve 97.(Figure 3). This pain may be characterized as burning, stinging, coldness, or lightning pains, which may progress to hypo- or anesthesia and skin area can be hair loss (Figure 4). Pain is often subacute 58. Dysesthesia can be aggravated by even the touch of clothing, or leg extension during rest and sleeping 57. Patients often avoid placing objects over the affected thigh. Classically, these symptoms are produced in the erect or the supine position and are relieved by flexing the thigh 59. Clinical examination shows a positive inversed Lasegue’s sign that is performed by flexing the knee and extending the hip with the patient in lateral position (similar to Menell’s procedure). Local pressure over the inguinal ligament especially close to the anterior superior iliac spine may produce pain or local irritation in the nerve distribution 60. Sensory changes are usually unilateral and there are no symptoms of motor neuropathy 61. Many patients present with severe and bizarre types of pain over the lateral aspect of the thigh which may be so severe that the victims are incapacitated. The patient may walk with a limp that closely mimics that of actual hip joint disease 62.

Figure 3. The lateral skin of the thigh typically develops paresthesia, burning pain, and disturbances in sensation (ref. 8).

Figure 4. Area of hair loss on the thigh of 35-year-old patient with Meralgia Paresthetica.
Diagnosis

The diagnosis of MP is usually based primarily upon reported clinical signs and symptoms and specific area affected. Electrodiagnostic testing can be used in patients with atypical clinical presentations. Electromyographic studies show nerve compression on affected side using patients’ unaffected leg as control. Lo and Pavani demonstrated on 12 cases the usefulness of antidromic sensory nerve conduction in the diagnosis and prognostic aspects of meralgia paresthetica. Seror compared sensory nerve conduction with somatosensory evoked potential and demonstrated that the sensory nerve conduction is the more reliable method for electrodiagnosis of MP. In daily clinical practice, electrodiagnostic studies are not commonly performed due to their variable results.

In the recent literature, ultrasound imaging has been proposed as a useful modality as it confirms nerve entrapment with sonographic findings of swollen and hypoechoic lateral femoral cutaneous nerve. Magnetic resonance imaging (MRI) or computed tomography (CT) are useful in the diagnosis of eventual causes of the syndrome because of the compression of the nerve in the abdomen and pelvis.

The differential diagnosis includes femoral neuropathy, lumbar-sacro-plexus pathology, extra-sciatic radiculopathies L2 and L3 nerve roots, pelvic tumors or metastasis that compress the nerve, chronic appendicitis.

Treatment

The type of treatment in the patient with meralgia paresthetica can be decided almost on the patient’s history alone and it can be conservative or operative. More than 85% percent of patients respond to conservative treatment, but recurrence is common.

Conservative treatment is known as the local infiltration of the nerve with an anesthetic agent on one or two occasions. Although the injection of the LFCN has been classically described using anatomic landmarks, owing to the anatomic variability of the nerve, failure rates have been reported as high as 60%.

On the other hand, similar to any other US guided injections, real-time imaging with US definitely avoids such an untoward eventuality. According to Elavarasi A. et al. triamcinolone acetonide injected locally seems to be an effective and safe treatment for refractory MP. Local application of anesthetics and corticosteroid may bring immediate relief of the symptoms.

At the same time this injections serves in the differential diagnosis. Conservative therapy includes iontophoresis and use of the anesthetic ointments on the area of the affected skin. Capsaicin causes selective excitation of C-fibre polymodal nociceptor afferents and has also been successfully used to treat skin hypersensitivity and itch in MP.

Many authors recommended weight loss in obese patients, optimal diabetic control, removal of compressive garments, and physical and electric therapy like transcutaneous electrical nerve stimulations (TENS), nonsteroidal anti-inflammatory drugs, tricyclic antidepressants, and anticonvulsants.

Palmithylethanola-mide (PEA) is commonly used in the treatment of chronic pelvic pain and compressive neuropathies. Calbro RS et al. describe an otherwise healthy 28-year-old patient affected by MP who was successfully treated with PEA (1200mg/day). Peripheral nerve stimulation (PNS) has been considered a new treatment option for meralgia paresthetica. Newer PNS technology targets peripheral nerves directly yet in a minimally invasive manner.

Some authors report the use of lateral femoral cutaneous nerve radiofrequency ablation or extended duration (8 minutes) pulsed radiofrequency of the LFCN for long term control of refractory meralgia paresthetica.

If conservative therapy fails neurolysis or nerve resection is indicated because the patients prefer hypoesthesia to burning pain. The most common operative treatment is nerve decompression with or without neurolysis.

Ahmed A et al. recommended alcohol neurolysis. Son et al. on the experience of 11 patients who had decompression and neurolysis concluded: “that neurolysis of the LFCN can provide adequate pain relief with minimal complications for medically refractory MP. To achieve a good outcome in neurolysis for MP, an accurate diagnosis with careful examination and repeated blocks of the LFCN, along with electrodagnosis seems to be essential. Possible variation in the course of the LFCN and thorough decompression along the course of the LFCN should be kept in mind in planning decompression surgery for MP.”

Transposition of the nerve is described by AJ Hanna in two publications. Surgical treatment involves transection or decompression of the lateral cutaneous femoral nerve.

There is no clear consensus on the superiority of one technique over the other. Payne R et al. performed a systematic review of the literature to answer this question. In conclusion after reviewing the data, there was insufficient evidence to recommended one method of treatment over the other.

Many treatments for MP are available, but they are supported only by moderate to low-quality evidence. Treatments range from conservative to interventions using nerve blocks and surgery. The benefit of one treatment regime over another is therefore not possible to quantify. Without a clear superiority of any treatment, Sanjaya A. concludes that treatment should be done in a stepwise fashion, from the noninvasive to the more invasive treatment if symptoms persist.

Conclusion

Meralgia paresthetica in most cases is self-limited, benign disease but it can decrease the quality of life if not diagnosed and treated appropriately. The diagnosis is based primarily upon clinical history and detailed physical exam, but other diagnostic procedures can assist in the differential diagnosis. The condition in most cases can be treated with conservative therapies and measures, neurosurgical management is performed only in patients with severe symptoms.
REFERENCES:

39. Park JW, Kim DH, Hwang M, Bun HR. Meralgia paresthet- ica caused by hip-huggers in a patient with aberrant course...

